

# Voting verifiability

2020/11/5

Mitsunari Shigeo

#### Summary

- Confidentiality and authenticity of electronic voting
- Blind signature
- Homomorphic Encryption
- Mix-Net
- Consideration about verifiability

#### EVS (Electronic voting system)

- Objective
  - To collect information regarding informants while leaving their identifies unidentified
- Matters to consider
  - Confidentiality
  - Authenticity
  - Verification
  - Verifiability

## Confidentiality and authenticity

- Confidentiality
  - Voter secrecy must be protected
- Authenticity
  - Accepted votes belong to voters
  - Only valid votes are counted
  - No one can change the vote

## Verification and Verifiability

- Verification
  - To ensure that voters have the right to vote
  - The principle of "one person, one vote (prohibition of double voting)"
- Verifiability
  - Verifiability on an individual basis
    - Voters can verify that their votes were properly counted
  - Verifiability on a group basis
    - After the vote, everyone can verify that the tally was tallied correctly

- Verifiability of complaints
  - A voter having right claims that his or her vote was not counted
    - Able to verify the claim to be true
  - A voter not having right claims that his or her vote was not counted
    - Able to verify the claim to be false
  - Keeping the votes of legitimate voters' secret if possible

#### Signature: a review

- Key generation
  - Generation of signature key (private key) and verification key (public key)
  - Disclose verification key
- Signature for message
  - $\sigma$ =Sign(s,m)
- Verification for message and signature
  - Verify $(S, m, \sigma) = 1$ (accepted), 0 (rejected)



## Blind signature

- Signer signs not knowing m
- Key generation
  - Generation of signature keys and verification key S
- Signature for message
  - $\sigma = Sign(s,m)$
  - Signer doesn't know about m
- Verification for message m and signature  $\sigma$ 
  - Verify( $S, m, \sigma$ )=1 (accept), 0 (reject)
- Illustration





#### Cybozu<sup>\*</sup>Labs

Vote-counting

Agency B

### EVS by Blind signature

- Roles
  - Registration agency A, Voter  $U_i$ , Vote-counting Agency B
- Preparation
  - Generate A's signature key s and verification key S and disclose them
- Vote
  - A verifies identity and that he/ she hasn't voted
  - U<sub>i</sub> does a blind signature for vote mi
  - $v_i = (m_i, \sigma_i = Sign(m_i, s))$
- Vote-counting
  - $U_i$  sends  $v_i$  anonymously to B. B then verifies the signature and accepts it
  - After the vote, B disclose all votes and tally



Vote  $v_i$ 

### Vote by Homomorphic Encryption

- Homomorphic Encryption
  - An encryption that allows encrypted text-to-text calculations
  - Enc(x) + Enc(y) = Enc(x+y)
- Vote-counting agency B prepares public key S and private key and disclose public keys
  - Tallying 1 in favor, 0 against



### Zero-knowledge proof

- If m = 100 in Enc(m), then one person would have 100 votes
  - Registration agency A wants to verify whether 0 or 1 in mi
  - We use ZKP (Zero-knowledge proof)



- Voter sends the encrypted text c and the corresponding certificate  $\pi$
- Registration agency confirms  $m \in \{0,1\}$  Based on  $(c,\pi)$ 
  - Doesn't know whether m=0 or m=1
- Implementation by using WebAssembly
  - https://github.com/herumi/she-wasm

Mix encrypted texts



- $\{c_1, \dots, c_n\} = \{c'_1, \dots, c'_n\}$
- Replacement and ZKP
  - Knows that texts have been replaced
  - Doesn't know which and to where it has been moved
  - Repeats Mix-Net
- ZKP at Dec(c) = m
  - Indicates that you have decrypted the encrypted text correctly without exposing the private key

12 / 17

- Suppose that...
  - We can all trust registration agency and vote-counting agency
    - There is no foul play
    - They don't conspire
- Confidentiality
  - Registration agency
    - We don't know which elector was voted by blind signature
    - Separate "confirmation of voting rights" and "signature of vote contents"
  - Vote-counting agency
    - Do not collect information of connection when voters vote
      - Is blockchain available?
      - Use Tor when necessary?

### Verifiability regarding blind signature

- Individual
  - Find your vote from all published votes
- Group
  - Everyone can check the authenticity of their vote signature
  - The correctness of the voting result also can be checked
- Complaints about vote
  - A voter claims that his or her vote was not counted
    - An example of getting that voter to disclose his/ her vote
      - Sign  $H(r_i)||m_i|$  by using random number  $r_i$  and hash function H insead of  $m_i$
      - A voter with no foul play can disclose  $r_i$
      - A voter with foul play can't

# Examination of fraud by registration agency Cybozu Labs

- Registration agency can fabricate legitimate ballots at will
- One countermeasure
  - Decentralization of registration agency  $A_1, ..., A_n$ 
    - Safe as long as registration agencies don't work together in conspiracy
    - Voter's  $\overline{m_i} = H(r_i) || m_i, r_i$ ; random number
    - Get each  $A_i$  to do a blind signature  $\overline{m_i}$
    - Vote-counting Agency
      - $\sigma_{i_1}$ , ...,  $\sigma_{i_n}$  verify that it is the right signature to  $\overline{m_i}$

# Examination of fraud by vote-counting agency Labs

- Vote manipulation
  - In principle, it's not possible to manipulate counting and data
  - Risk of exploitation of voters' information
- Possibility of seeing tally status before voting completes



#### Countermeasures

- Use commitment
  - No one knows what is in c = Commit(m); m
  - Disclose Open(c); m
  - Each voter writes  $c_i = Com(m_i)$  in vote instead of  $m_i$
  - All votes  $\{c_i, \sigma_i\}$  are published
  - Afterwards, Open commitment and everyone gets  $\{m_i\}$
  - Cons: The presence of people who don't open/ data of voters are kept until opening of vote

