Items to be described as performance measurement conditions and results

Couger Inc. Lead Project Manager: Keita Shimizu Since June this year, ETHTerakoya has held discussions about blockchain performance evaluation indicators over seven expert workshops.

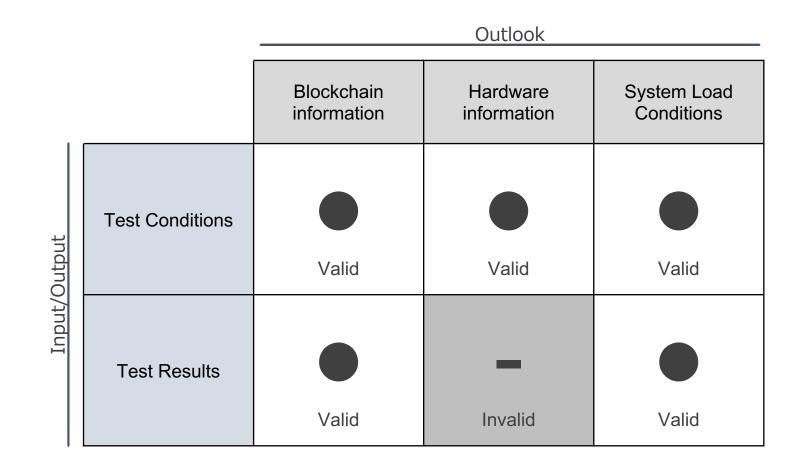
Schedule

Details of the previous discussions are as follows:

#	Date	Details
1	6/3/2021	Working Group Goals, Progress, and Results
2	6/21/2021	 Important indicators for blockchain performance evaluation
3	7/7/2021	Blockchain performance indicator deep-dive
4	8/5/2021	Test conditions and implementation method
5	8/25/2021	 Test implementation/results sharing and detected problems 1
6	9/16/2021	 Test implementation/results sharing and detected problems 1
7	10/1/2021	 Test implementation/results sharing and detected problems 2
8	10/29/2021	Public Workshop

Participating Companies

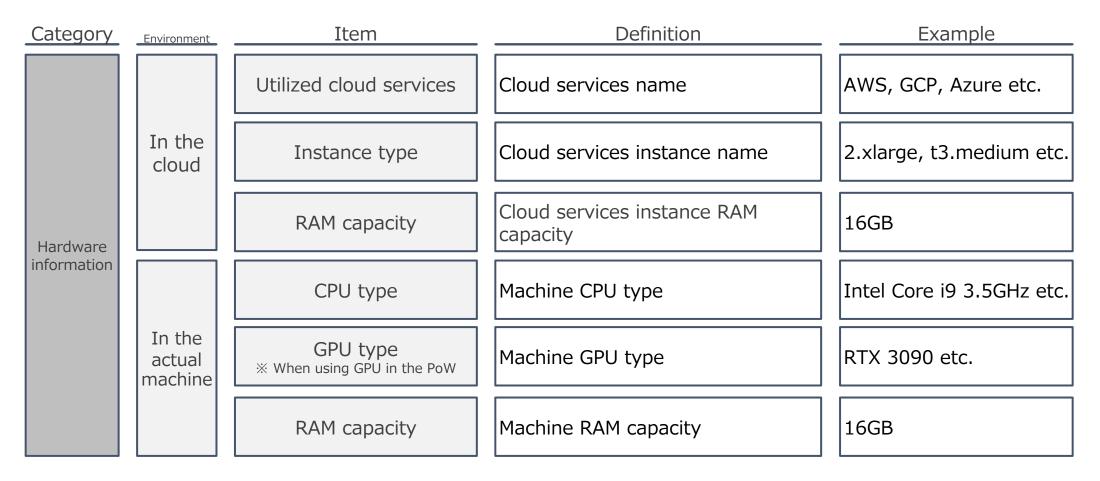
We created working groups of companies that have track records in blockchain development and companies that are considering/have already started using blockchain in their business, and proceeded with discussions.


As for test conditions and results requiring close scrutiny during performance verification, finalization for the initial listed items was accomplished by fleshing them out based on past cases, surveys and verifications of each participating company.

Performance Evaluation Index Scrutiny Process

Each test condition / result item is categorized into three viewpoints and then further broken down into subcategories. Since there is no valid hardware information available from the results, we will elaborate on the remaining 5 classifications.

Breakdown of Test Conditions and Results


Chain information is essential as a test condition. It is possible to make a fair chain comparison by setting the client's name, the consensus building algorithm, the target method, and the number of nodes as the test conditions.

Test Condition item 1- Chain Information

Category	Item Definition		Example
	Blockchain Client Name	Blockchain Client Name	Ethereum / Geth, Hyperledger Fabric etc.
	Consensus Algorithm	A method for making network-wide agreements in the blockchain	Proof of Work (Ethash), Proof of Authority (Clique) etc.
Blockchain information	Transaction Method	A state transition method for changing blockchain data values. Processing subject performance measurement contents	Smart contract code used for performance evaluation, etc.
	Network Size (Node No.)	Number of validating nodes participating in consensus building	Number of nodes

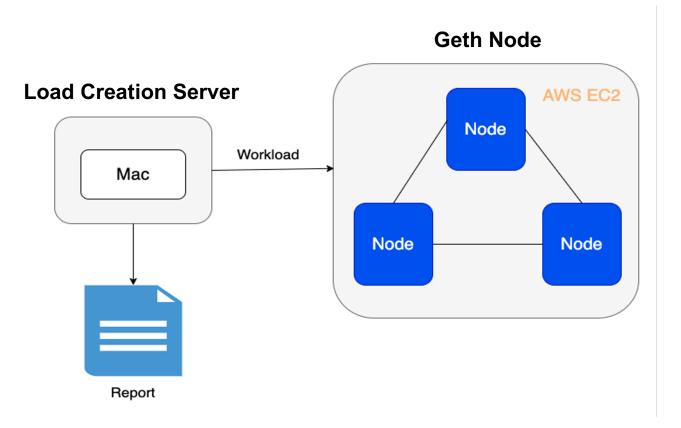
Since hardware performance is also a factor that affects the performance of the chain, it is desirable to provide information on the operating environment of the chain and the load generation server.

Test Condition item 2- Hardware information

Since using tools in the chain affects the test results, it is is necessary to describe the system load conditions as well.

Test Condition item 3- System Load Conditions

Category	Item	Definition	Example
	Load Generation Client Number	Number of load bearing clients in the system	200
System Load	Total Load Requests	Total number of requests sent from the client	73,555 tps
Conditions	Load Duration	Total amount of time for the client load	60s
	Request limit number from a single load tool	Maximum number of requests that can be made from a single load tool	13,555 tps


It is thought that chain performance can be seen by looking at the latency throughput for processing and CPU/disk loads as a test result.

Test Result Items

Category	Item	Definition	Value (Example)
	Read Latency	Total amount of time to send and receive read requests	0.18 s
Blockchain	Read Throughput	Amount processed per second	813.1
Information	Transaction Latency	The time it take for the entire network to validate a transaction.	11.18 s
	Transaction Throughput	Percentage of valid transactions executed by the blockchain over a defined period of time	27.4
	CPU Load	Load on CPU	Max: 56.7% Avg: 21.83% etc.
System Load Information	Disk Capacity Load	Load on disk capacity	Min:0.80 KB/s Max:146.80 KB/s Avg:49.47 KB/s

We also built an actual 3-node Geth network, and verified performance by clarifying each test condition and result item.

System Configuration Overview Diagram

The condition and result item information from the working groups is as follows.

Test implementation condition-Blockchain information

- The client used Geth this time.
- The method targets Transfer for transaction measurement and balanceOf for read measurement.

Item	Definition	Value
Blockchain Client Name	Blockchain Client Name	Geth
Consensus Algorithm	A method for making network-wide agreements in the blockchain.	Proof of Authority (Clique)
Transaction Method	A state transition method for changing blockchain values. The content of the target performance measurement process.	Transfer balanceOf
Network Size (Node No.)	The number of validator nodes participating in consensus building.	3 nodes

Test implementation condition-Hardware information

Load Creation used a MacPC, and the chain nodes used AWS to create a network.

Item Definition		Value
Load Creation Serve		
CPU Type	Machine's CPU Type	Apple M1
GPU Type ※When using GPU in PoW	Machine's GPU Type	Apple Standalone Octacore
RAM Capacity	Machine's RAM Capacity	16 GB
Blockchain Name No	de: Cloud	
Utilized Cloud Services	Cloud Services Name	AWS
Instance Type	Cloud Services Instance Name	t2.xlarge
RAM Capacity	Cloud Services Instance Ram Capacity	16 GB

Verification was run with the total number of load requests set to 1000. For individual conditions, the target TPS was 50 TPS, the block generation time was 10 seconds, and the number of approvals considered successful was 2 blocks.

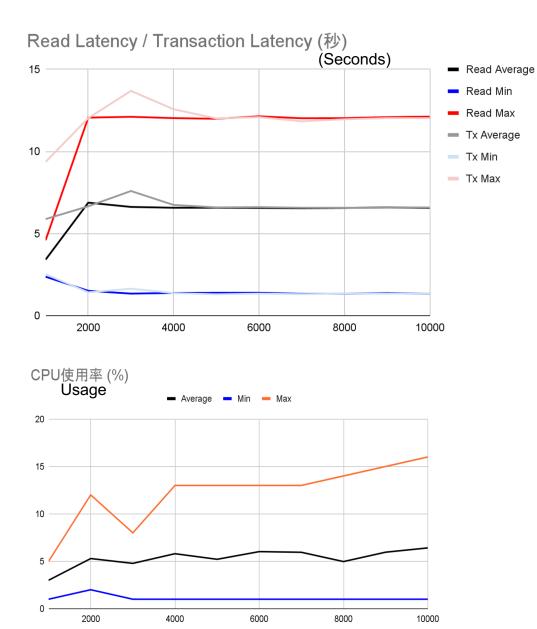
Test Implementation Conditions-System Load Conditions

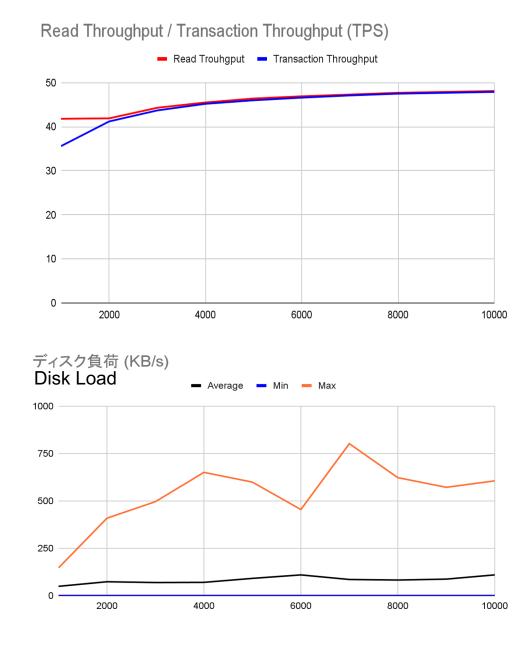
The total number of requests is set to 1,000.

Item	Definition	Value
Load Creation Client Number	Number of load bearing clients on the system	1
Total Load Request Number	Total number of requests sent from the client	1,000 transactions
Load Duration	Length of load time from the client	35 seconds
Single Load Tool Request Limit	Maximum number of requests that can be made with a single load tool	17,541 transactions

Test Implementation Results

CPU/Disk Load was measured every 5 seconds with iostat and vmstat

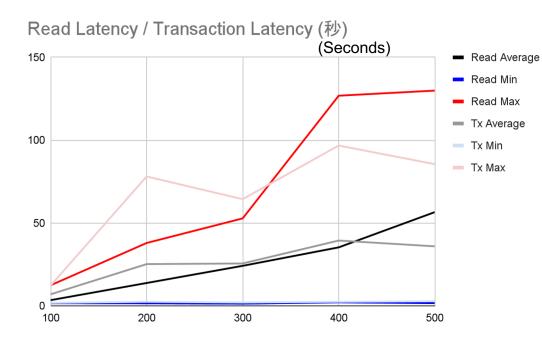

Item	Definition	Value
Read Latency	Total time taken to send and receive a read request	Min.: 2.37s Max.: 4.59s Avg.: 3.41s
Read Throughput	Number of readings per second	41.8 TPS
Transaction Latency	Amount of time it takes to validate all transactions in the entire network	Min.: 2.52s Max.: 9.36s Avg.: 5.88s
Transaction Throughput	The rate at which a valid transaction is committed by the blockchain over a period of time	35.6 TPS
CPU Load	Load on the CPU	CPU Usage Min.: 1% Max.: 5% Avg.: 3%
Disk Capacity Load	Load on the Disk Capacity	HDD write average per 1 second Min.: 0.80 KB/s Max.: 146.80 KB/s Avg.: 49.47 KB/s

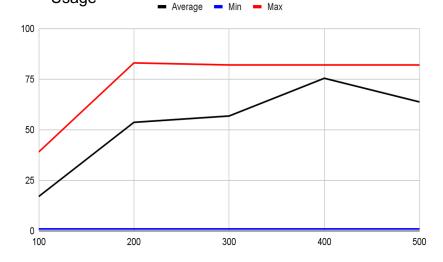

[Additional Conditions 1] Set Target TPS of 50 TPS : The following graph shows the increase in the total number of transactions

Test Results

Total Load Request No.	Read Latency	Read Throughput	Transaction Latency	Transaction Throughput	CPU Usage	Disk Space Load
1000	Min.: 2.37s Max.: 4.59s Avg.: 3.41s	41.8 TPS	Min.: 2.52s Max.: 9.36s Avg.: 5.88s	35.6 TPS	Min.: 1% Max.: 5% Avg.: 3%	Min.: 0.80 KB/s Max.: 146.80 KB/s Avg.: 49.47 KB/s
2000	Min.: 1.51s Max.: 12.06s Avg.: 6.88s	41.9 TPS	Min.: 1.42s Max.: 12.03s Avg.: 6.66s	41.2 TPS	Min.: 2% Max.: 11% Avg.: 5.29%	Min.: 0.80 KB/s Max.: 408.80 KB/s Avg.: 73.55 KB/s
3000	Min.: 1.34s Max.: 12.11s Avg.: 6.62s	44.3 TPS	Min.: 1.64s Max.: 13.69s Avg.: 7.59s	43.7 TPS	Min.: 1% Max.: 12% Avg.: 4.78%	Min.: 0.30 KB/s Max.: 496.00 KB/s Avg.: 69.37 KB/s
9000	Min.: 1.37s Max.: 12.09s Avg.: 6.59s	47.9 TPS	Min.: 1.34s Max.: 12.03s Avg.: 6.58s	47.7 TPS	Min.: 1% Max.: 15% Avg.: 5.96%	Min.: 0.80 KB/s Max.: 571.60 KB/s Avg.: 87.43 KB/s
10000	Min.: 1.33s Max.: 12.12s Avg.: 6.56s	48.1 TPS	Min.: 1.34s Max.: 12.03s Avg.: 6.59s	47.9 TPS	Min.: 1% Max.: 16% Avg.: 6.41%	Min.: 0.80 KB/s Max.: 605.60 KB/s Avg.: 109.76 KB/s

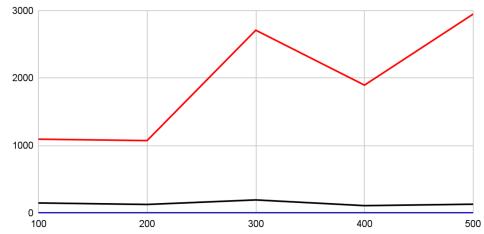
% The total load request range from 4000-8000 is omitted due to space limitations.




[Additional Conditions 2] Total number of transactions set to 10,000: the following graph shows the increase in the target TPS.

Test Results

Target TPS	Read Latency	Read Throughput	Transaction Latency	Transaction Throughput	CPU Usage	Disk Space Load
100	Min.: 1.57s Max.: 12.39s Avg.: 3.41s	55.4 TPS	Min.: 1.75s Max.: 12.23s Avg.: 6.95s	53.4 TPS	Min.: 1% Max.: 39% Avg.: 17%	Min.: 0.8 KB/s Max.: 1093 KB/s Avg.: 147.58 KB/s
200	Min.: 1.51s Max.: 37.93s Avg.: 13.77s	136.4 TPS	Min.: 2.42s Max.: 78.08s Avg.:25.18s	81.1 TPS	Min.: 1% Max.: 83% Avg.: 53.65%	Min.: 0.8 KB/s Max.: 1072 KB/s Avg.: 125.6 KB/s
300	Min.: 1.29s Max.: 52.78s Avg.: 24.14s	130.5 TPS	Min.: 2.01s Max.: 64.39s Avg.: 25.57s	121.6 TPS	Min.: 1% Max.: 82% Avg.: 56.78%	Min.: 0.7 KB/s Max.: 2708 KB/s Avg.: 192.75 KB/s
400	Min.: 2.09s Max.: 126.85s Avg.: 35.29s	66.1 TPS	Min.: 2.43s Max.: 96.77s Avg.: 39.40s	94.5 TPS	Min.: 1% Max.: 82% Avg.: 75.42%	Min.: 0.7 KB/s Max.: 1894 KB/s Avg.: 108.02 KB/s
500	Min.: 1.61s Max.: 129.93s Avg.: 56.55s	70.3 TPS	Min.: 2.76s Max.: 85.53s Avg.: 35.91s	70.3 TPS	Min.: 1% Max.: 82% Avg.: 63.717%	Min.: 0.60 KB/s Max.: 2947.2 KB/s Avg.: 129.093 KB/s


CPU使用率 (%) Usage

Read Throughput / Transaction Throughput (TPS)

Since the measurement was performed with the total number of load requests and the target TPS as variables, it was possible to verify the performance limit points and possibilities of Geth.

Test Results Summary

1 Target TPS set to TPS of 50: Increase the total number of transactions

- The ThroughPut comes close to 50TPS for increasing the total number of transactions.
- The latency and MAX CPU/Disk Load values become larger with a unilateral variation increase, but only a slight average value increase.

The request seems to be handled as usual with a minimal load application even when setting the target TPS to 50 TPS and increasing the number of requests to 10,000.

• However, if there is a further increase in the number of transactions pending transactions will start to accumulate, with a lag in processing at 17,000, so the limit number of requests for a single load tool appears to be 17,500.

2 Total number of transactions set to 10,000: increase the target TPS

- The Maximum ThroughPut is somewhere between 200-300 TPS, with it actually decreasing at over 300 TPS. The resulting CPU usage and disk load increases, but the increased latency and load only increase without an improvement in the ThroughPut, so these seem to be the maximum values.
- Ethereum mainnet is said to run at 15 TPS, so it seems that the speed can be expected to increase by about 20 times when making it a private chain at the expense of decentralization.

Having a common evaluation index allows for verification and performance comparison of a wide variety of chains under the same conditions. I ask for your cooperation if you have comments about the white paper or are considering referencing it.

For Publication/Update of White Paper:

	Introduction 1.Introduction 1 本資料中海の得景 1.1 About the Creation of this Document 1.2 本資料中向雪 1.2 Aing fit this Document 1.3 本資料中の活動 1.3 Target Audience of this Document 1.4 本資料中の活動 1.4 Contents of this Document 1.5 未資料中の活動 1.5 How to Use this Document 1.5 未資料中の活動 1.5 How to Use this Document 1.5 未資料中の活動方法 1.5 How to Use this Document	 Appendix 4.1 Hyperledger Caliper でのアスト手順 4.1.1 用酒 4.1.2 Caliper 初期設定 4.1.2 Caliper 时間目 Settings 4.1.2 Caliper 时間目 Settings 4.1.3 / FCL: 名奈南 4.1.3 / FCL: 名奈南 4.1.4 提取 / FCL: 名奈南 4.1.5 程序の定れ 4.1.5 Riper Rel Load 4.1.5 Riper Rel Load 4.1.7 RipeRity 6.7 法
Ethereum Performance Metrics	2.1 性能テスト条件として使用される用語 2.1.1 Blockchain Name 2.1.1 Blockchain Name 2.1.2 Consensus Algorithm (Creation	5 参考文献 5. References 6 変更問題 6. Revision History
Version:1.0.0	2.1.2 Consensus Algorithm(会觀地成任年)。 Model Agreement) 2.1.3 Transaction Method 2.1.4 Network Size (Node 数) 2.1.4 Network Size (Node 数)	V ADEXMAL O. REVISUI HISUIY
ETHTerakoya Scaling Working group	1.2. System Lead Conditions 2.1. Spätem System 2.1. Spätem System 3.1. Spätem System 	2

- Github repository : XXXXXX
- ETHTerakoyaWEB : https://ethereum-terakoya.org/scaling/
- Contact information : ETHTerakoya Executive Office contact@ethereum-terakoya.org